您現(xiàn)在的位置: > 大學(xué)英語(yǔ)六級(jí) > hyperbolist hyperbolist 的音標(biāo)是[?ha?p??l?st?st],基本翻譯是“ hyperbolist ”。速記技巧是:hyperbo- 詞根,hyper- 表示“過度,過分”,-ist 表示“人”。可以聯(lián)想記憶為“對(duì)事物過度夸張的人”。
Hyperbolist 的英文詞源:
Hyperbolist 是一個(gè)合成詞,由 hyperbola(雙曲線)和 -ist(表示“……者”)組成。
Hyperbola 的詞源可以追溯到古希臘語(yǔ)中的 "hypo"(在……下面)和 "bolos"(投擲物)。在數(shù)學(xué)中,雙曲線被描述為一種在兩個(gè)焦點(diǎn)下的投擲運(yùn)動(dòng)軌跡。
變化形式:復(fù)數(shù)形式為 hyperbolae。
相關(guān)單詞:
1. Hyperbolic - 形容詞,表示雙曲線的。
2. Hyperboloid - 名詞,表示雙曲線面的。
3. Focal point - 焦點(diǎn),是雙曲線上的一個(gè)特殊點(diǎn)。
4. Convergence - 趨近,雙曲線上的點(diǎn)向一個(gè)焦點(diǎn)趨近。
5. Eccentricity - 偏心距,描述了焦點(diǎn)與中心之間的距離。
6. Inverse Hyperbola - 反雙曲線,是一種特殊的雙曲線。
7. Parametric Equation - 參數(shù)方程,用于描述雙曲線的方程。
8. Hyperbolic Sphere - 雙曲球面,是一種雙曲線形狀的球體。
9. Hyperbolicaurus - 一種虛構(gòu)的恐龍名字,其名字源于雙曲線形狀的骨骼結(jié)構(gòu)。
10. Hyperbolization - 一種藝術(shù)和文學(xué)手法,用于創(chuàng)造雙曲線形狀的圖像或文本。
常用短語(yǔ):
1. hyperbolic paraboloid 雙曲拋物面
2. hyperbolic motion 雙曲運(yùn)動(dòng)
3. hyperbolic function 雙曲函數(shù)
4. hyperbolic constant 雙曲常數(shù)
5. hyperbolic radius 雙曲半徑
6. hyperbolic angle 雙角
7. hyperbolic distance 雙曲距離
例句:
1. The hyperbolic paraboloid is a mathematical model used to describe the shape of a parabolic reflector.
2. The hyperbolic motion of a particle describes its acceleration in a curved space-time.
3. The hyperbolic function is used to calculate the speed of light in different media.
4. The hyperbolic constant is a fundamental parameter in the theory of hyperbolic equations.
5. The hyperbolic radius determines the size of the object in hyperbolic geometry.
6. The hyperbolic angle between two vectors describes their relative orientation.
7. The hyperbolic distance between two points is the length of the shortest path connecting them.
英文小作文:
Hyperbolism: A New Perspective on Space and Time
Hyperbolism provides us with a new perspective on space and time, allowing us to explore the curved and non-Euclidean world in which we live. From hyperbolic motion to hyperbolic functions, hyperbolism offers a rich array of mathematical models that help us understand the fundamental principles of physics and geometry.
Hyperbolism is not just a mathematical concept, but rather a way of thinking about the world that emphasizes the importance of non-Euclidean concepts such as curvature and orientation. It encourages us to question our assumptions about space and time, and to explore alternative ways of understanding our universe.
Hyperbolism has many practical applications, from the modeling of curved space-time to the calculation of the speed of light in different media. It also provides us with a new way of thinking about geometry, allowing us to see how different concepts such as angles and distances can be described using hyperbolic measures that are more suitable for describing complex and non-Euclidean environments.
In conclusion, hyperbolism is a powerful tool that can help us understand the world in new and exciting ways. It encourages us to question our assumptions, to think outside the box, and to explore alternative ways of approaching problems that are often seen as too complex or difficult to solve. With hyperbolism, we can see that there are always new perspectives waiting to be discovered, and that mathematics can be a powerful tool for exploring our universe and understanding its fundamental principles.
名師輔導(dǎo)
環(huán)球網(wǎng)校
建工網(wǎng)校
會(huì)計(jì)網(wǎng)校
新東方
醫(yī)學(xué)教育
中小學(xué)學(xué)歷